Лекции по курсу «Основы мобильных приложений» для студентов 3-го курса специальности «ИС» R&D осеннего семестра 2022-2023 уч.года

Лекция 1
ГЛАВА 1. Программирование на языке Котлин
Что мы расскажем:
· Введение в язык Котлин.
· Как получить Котлин
· Установка Kotlin на macOS, Windows и Linux
· Запуск программы Kotlin в командной строке
· Создание и запуск проекта в IntelliJ IDEA
В этой главе представлен язык Kotlin и некоторые подробности о том, как настроить среду разработки. Вы найдете инструкции по установке Kotlin в macOS, Windows и Linux. Вы также найдете инструкции о том, как установить среду Kotlin, используя простую командную строку. Каждый разработчик тяготеет к определенным видам установки, и ваш покорный слуга не исключение. Вот схема, которую я использовал на протяжении всей книги:
· IntelliJ 2018 под управлением macOS (High Sierra). Я использовал это в главах с 1 по 7.
· Android Studio 3 на macOS (High Siera). Я использовал это для остальной части книги
Вам не нужно следовать моим точным настройкам. Мы постарались, чтобы инструкции в этой книге работали в Linux и Windows так же хорошо, как и в macOS. Кроме того, когда я говорю Linux, я не имею в виду все дистрибутивы Linux. Дело в том, что я тестировал эти коды только в Lubuntu 17. Почему? Потому что это дистрибутив Linux, с которым я больше всего знаком. Я считаю, что большинство читателей этой книги (которые используют Linux) также знакомы с этим дистрибутивом Linux (или любым из его близких родственников).
Android Studio 3 и IntelliJ работают с Windows 7, 8 и 10 (32- и 64-разрядными), но я тестировал упражнения только на 64-разрядной версии Windows 10 - это единственная машина, к которой у меня есть доступ; и я считаю, что большинство читателей, использующих Windows, также используют эту настройку.
Наконец, давайте обсудим версию JDK. На момент написания JDK 10 находится в раннем доступе. Таким образом, выбор версии JDK был 8 или 9 (поскольку JDK 7 закончил свою жизнь где-то в 2015 году). Я выбрал 9 - без особой причины, думаю, 8 сработало бы так же хорошо.
О Котлине
Kotlin - это новый язык, ориентированный на платформу Java; его программы работают на JVM (виртуальной машине Java), что ставит его в ряд языков, таких как Groovy, Scala, Jython и Clojure, и это лишь некоторые из них.
Kotlin принадлежит JetBrains, создателям IntelliJ, PyCharm, WebStorm, ReSharper и других замечательных инструментов разработки. В 2011 году JetBrains представила Kotlin; в следующем году они создали Kotlin с открытым исходным кодом под лицензией Apache 2. На Google I / O 2017 компания Google объявила о первоклассной поддержке Kotlin на платформе Android. Если вам интересно, откуда произошло название Котлин, то это название острова недалеко от Санкт-Петербурга, где проживает большинство членов команды Котлин. По словам Андрея Бреслава из JetBrains, Котлин был назван в честь острова, так же как Ява была названа в честь индонезийского острова Ява.
Однако вы можете помнить, что в истории языка Java есть упоминания о том, что он был назван в честь кофе, а не острова.
У Kotlin как языка много характеристик и возможностей, и у нас есть вся первая часть этой книги, чтобы исследовать их, но вот несколько вещей, которые делают его интересным.
· Как и Java, он объектно-ориентирован. Так что все те долгие часы, которые вы потратили на ООП и шаблоны проектирования Java, не пропадут даром. Классы, интерфейсы и дженерики Kotlin выглядят и ведут себя очень похоже на Java. Это определенно сильная сторона, потому что, в отличие от других языков JVM (например, Scala), Kotlin не выглядит слишком чужим. Это не отталкивает Java-программистов; вместо этого он позволяет им использовать свои сильные стороны.
· Статически строго типизированный. Еще одна область, которую Котлин разделяет с Java, - это система типов. Он также использует статическую и строгую типизацию. Однако, в отличие от Java, вам не нужно всегда объявлять тип переменной перед ее использованием. Kotlin использует вывод типов.
· Менее церемониальный, чем Java. Нам не (всегда) нужно писать класс; функции верхнего уровня в определенном порядке. Нам не нужно явно писать геттеры и сеттеры для объектов данных; в Kotlin есть языковые функции, которые позволяют нам избавиться от таких шаблонных кодов. Кроме того, естественный способ написания кода в Kotlin не позволяет нам когда-либо присваивать значение null переменной. Если вы хотите явно разрешить значение null, вы должны сделать это намеренно.
· Это функциональный язык. Функции - это не просто именованный набор операторов; вы можете использовать их везде, где можете использовать переменную. Вы можете передавать функции из ввода параметра в другие функции, и вы даже можете возвращать функции из других функций. Таким образом, кодирование позволяет использовать другой способ абстракции.
· Взаимодействие с Java. Kotlin может использовать библиотеки Java, и вы также можете использовать его из программ Java. Это снижает барьер для входа в Котлин; совместимость с Java делает решение начать новый проект с использованием Kotlin менее сложным предприятием.
Есть много причин использовать Kotlin в вашем следующем проекте, но есть и контраргументы. Мы не будем перечислять плюсы и минусы того, почему вам следует или почему вам не следует использовать Kotlin в вашем следующем проекте; но я хочу обсудить одну причину, по которой я бы посоветовал вам притормозить и сделать паузу, прежде чем вы полностью увлечетесь этим.
Он все еще относительно новый. Некоторые убеждены, что он приближается к «пику завышенных ожиданий» и скоро войдет в «впадину разочарования». Их главный аргумент заключается в том, что, если вы сделаете ставку на Kotlin прямо сейчас, вы столкнетесь с проблемами кривой обучения и будете обязаны поддерживать эту кодовую базу, даже если Kotlin исчезнет в клубе дыма. Другими словами, вы можете нести это как технический долг.
Принятие Kotlin также потребует определенных затрат. Вам нужно будет обучить свою команду тому, как его использовать. Независимо от того, насколько опытна ваша команда, она определенно потеряет скорость на этом пути - и это проблема руководства проектом. Кроме того, поскольку Kotlin является новым, еще нет руководства «Эффективный Kotlin», а у Java-программистов всегда будет «Эффективная Java».
Все будет сводиться к вашей ставке. Если вы сделаете ставку на то, что Котлин сойдет с дистанции, вместо того, чтобы тихо исчезнуть в темноте, то ставка окупилась. Если вы ошиблись, сделав ставку, тогда вы пойдете по трудному пути поддержания кодовой базы несуществующего языка - технический долг. Либо так, либо вы переделаете его обратно на Java.
[image:]
Рисунок 1-1. Страница загрузки Oracle JDK
Google официально поддержал этот язык в Android Studio, и все больше и больше разработчиков присоединяются к нему. Принятие растет. Это хорошие признаки того, что Котлин не пойдет тихо и может действительно уйти далеко. Кроме того, это классный язык.
Обратите внимание: «Пик завышенных ожиданий» и «Пик разочарования» являются частью «цикла шумихи». Цикл шумихи - это фирменная графическая презентация, разработанная и используемая американской фирмой Gartner, занимающейся исследованиями, консультированием и информационными технологиями, для демонстрации зрелости, принятия и социального применения конкретных технологий. Вы можете узнать больше об этом на https://gtnr.it/cycleofhype.
Давайте продолжим и создадим среду разработки.
Установка Java SDK
Прежде чем мы сможем использовать Kotlin, нам нужно установить JDK. Если у вас уже есть установленный комплект для разработки Java, вы можете пропустить этот раздел и перейти к следующему (Установка Kotlin).

Установщик JDK доступен для Windows, Linux и macOS. Вы можете загрузить текущую стабильную версию с сайта Oracle http://bit.ly/java9download.1)
На рис. 1-1 показана страница загрузки Oracle JDK. Выберите программу установки, подходящую для вашей платформы, затем нажмите «Принять лицензионное соглашение», чтобы продолжить.
Установка на macOS
Чтобы установить JDK в macOS, дважды щелкните загруженный файл DMG и следуйте инструкциям. Установщик позаботится об обновлении системного пути, поэтому вам не нужно выполнять никаких дополнительных действий после установки.
[image:]
Рисунок 1-2. java и javac в Terminal.app
Когда вы закончите установку, вы можете проверить, установлен ли JDK, запустив «Terminal.app» и попробовав команду Java (см. Листинг 1-1).
Листинг 1-1. Протестируйте инструменты JDK на терминале macOS
$ java –version
$ javac –version

Вы узнаете, что установили JDK без проблем, если терминал выводит версию java и javac, как показано на рисунке 1-2.
Установка в Windows 10
Вы можете установить Android Studio 3 в Windows 7/8/10 (32- и 64-бит); но для целей этой книги я использовал только 64-разрядную версию Windows 10.
1) Доступно по адресу http://www.oracle.com/technetwork/java/javase/downloads/jdk9-downloads-3848520.html
Чтобы установить JDK в Windows, дважды щелкните загруженный заархивированный файл и следуйте инструкциям. В отличие от macOS, после установки необходимо выполнить дополнительную настройку. Вам необходимо
(1) включить java / bin в системный путь и
(2) включить определение CLASSPATH в переменные среды Windows.
В Таблице 1-1 приведены пошаговые инструкции, как это сделать.
Таблица 1-1. Конфигурация JDK в Windows
	1
	Включите JAVA_HOME / bin на системный путь
	1. Щелкните Пуск ➤ Панель управления ➤ Система.
2. Щелкните «Дополнительно» ➤ «Переменные среды». Есть две коробки для переменных в верхнем поле указано «Пользовательские переменные», а в нижнем поле - «Системные переменные», системный ПУТЬ будет в поле «Системные переменные».
3. Добавьте расположение папки bin в системную переменную PATH.
4. Обычно переменная PATH выглядит так: C: \ WINDOWS \system32; C: \ WINDOWS; C: \ Program Files \ Java \ jdk-9 \ bin;

	2
	Создайте определение CLASSPATH в Windows Переменные среды
	Пока окно переменных среды все еще открыто, нажмите кнопку «Создать» в разделе «Пользовательские переменные». Появится другое диалоговое окно с двумя текстовыми полями, которые позволят вам добавить новую переменную. Используйте указанные ниже значения для заполнения текстовых полей.
1. Имя ➤ CLASSPATH
2. Значение ➤ C: \ WINDOWS \ system32; C: \ WINDOWS; C: \ Program
Files \ Java \ JDK-9 \ JRE \ Lib \ rt.jar;

Закройте окно переменных среды и откройте окно cmd, чтобы мы могли проверить, вступили ли наши изменения в силу. Когда окно cmd открыто, введите команды, как показано в листинге 1-2.
Листинг 1-2. Протестируйте инструменты JDK в командной оболочке Windows
C: \ Users \ ваше имя> java –версия
C: \ Users \ ваше имя> javac –version

Если оболочка cmd показывает вам версию java и javac, значит, вы успешно установили и настроили JDK. Если, с другой стороны, вы увидели сообщение об ошибке (например, «Неверная команда или имя файла»), это означает, что JAVA_HOME \ bin все еще не является частью системного пути. Вам следует вернуться к Таблице 1-1 и перепроверить свои записи, а затем повторить тест.
Установка в Linux
Если вы пользователь Linux, возможно, вы видели параметры tar и rpm при загрузке, вы можете использовать их и установить, как если бы вы устанавливали любое другое программное обеспечение на своей платформе Linux, или вы можете установить JDK из репозиториев (см. Листинг 1-3). Эта инструкция применима к Debian и его производным (например, Ubuntu, Mint и т. д.).
Листинг 1-3. Установка JDK в Ubuntu с помощью PPA
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java9-installer
sudo update-alternatives --config java

Когда загрузка завершится, вы можете протестировать установку, попробовав инструменты java и javac из командной строки (см. Листинг 1-4). Откройте свой любимый эмулятор терминала (например, xterm, terminator, gnome-terminal, lxterminal и т. д.).
Листинг 1-4. Протестируйте инструменты JDK в Linux
$ java –version
$ javac –version

Если установка прошла успешно, вы сможете увидеть версии java и javac в вашей системе. После того, как JDK запущен, мы можем получить Kotlin.
Установка Kotlin
Есть несколько способов начать программировать на Kotlin. Вы можете использовать онлайн-среду IDE, которая является самой быстрой, потому что вам не потребуется ничего устанавливать. Вы также можете попробовать загрузить IDE, в которой есть плагин для Kotlin (например, IntelliJ, Android Studio или Eclipse).
Наконец, вы можете загрузить инструменты командной строки для Kotlin. Если вы не хотите устанавливать полноценную среду IDE и просто использовать свой любимый редактор, вы, безусловно, можете сделать это с помощью инструментов командной строки. Мы не будем рассматривать каждый из этих вариантов, но рассмотрим инструменты командной строки и IntelliJ.
Примечание. Эта книга посвящена Android Studio, поэтому вам может быть интересно, почему мы не будем использовать Android Studio для опробования Kotlin. Это потому, что эта часть книги посвящена только Kotlin, а не программированию для Android (пока). Я подумал, что лучше сосредоточиться на языке и не отвлекаться на темы, связанные с Android, когда мы выполняем некоторые упражнения по кодированию. Android Studio в любом случае основана на IntelliJ, поэтому любые методы IDE, которые мы изучаем в этой части книги, должны хорошо переноситься, когда мы дойдем до части 2.
Установка инструментов командной строки
Даже если вы выберете инструменты командной строки, есть несколько вариантов установки. Мы можем установить его,
(1) загрузив заархивированный файл;
(2) с помощью SDKMAN, если ваша ОС и инструменты его поддерживают; или
(3) с помощью HomeBrew или MacPorts, если вы используете macOS. Вам нужно только выбрать, какой из этих методов вам наиболее удобен, и использовать его.
HomeBrew или MacPort
Если вы используете macOS и уже используете brew или port, см. Листинг 1-5 или 1-6, где указаны команды терминала для получения Kotlin.
Листинг 1-5. Установите Kotlin с помощью HomeBrew
$ brew update
$ brew install kotlin

Листинг 1-6. Установите Kotlin с помощью MacPorts
$ sudo port install kotlin
Использование заархивированного установщика
Если вы зайдете на веб-сайт Kotlin, http://kotlinglang.org, затем «изучите» tutorial «учебные пособия» ➤ «начало работы» ➤ «работа с компилятором командной строки», вы найдете веб-страницу2), которая может выглядеть как показанный на Рисунке 1-3. Заархивированный установщик можно загрузить, перейдя по ссылке «Выпуски GitHub» (также показано на рис. 1-3).
[image:]
Рисунок 1-3. Страница компилятора командной строки Kotlin
Ссылка должна перенаправить вас на страницу GitHub JetBrains / Kotlin3) (рисунок 1-4). На момент написания Котлин был на версии 1.2.10; к тому моменту, когда вы это читаете, это может быть другая версия, но просто загрузите последнюю стабильную версию.
[image:]
Рисунок 1-4. Страница GitHub для заархивированного файла установщика
2) Работа с компилятором командной строки: https://kotlinlang.org/docs/tutorials/command-line.html
3) Страница JetBrains / Kotlin на GitHub: https://github.com/JetBrains/kotlin/releases/tag/v1.2.10
Когда загрузка завершится, разархивируйте файл установщика и поместите его где-нибудь в вашей системе, предпочтительно в каталог, в котором у вас есть права на чтение, запись и выполнение. Файл следует распаковать в папку с именем «kotlinc». Следующее, что нужно сделать, это добавить kotlinc / bin в папку переменных системного пути. В следующих разделах будет показано, как это сделать в macOS, Linux и Windows.
macOS и Linux
Скопируйте загруженный заархивированный файл в свой домашний каталог и распакуйте его там. В листинге 1-7 показана команда.
Листинг 1-7. Разархивируйте установщик Kotlin
$ cd ~
$ unzip ~ / kotlin-compiler-1.2.10.zip

Примечание. Команда unzip доступна в macOS по умолчанию, но для систем Linux вам может потребоваться сначала получить ее из репозиториев. В листинге 1-8 показана команда, позволяющая извлечь его из репозиториев.
Листинг 1-8. Получение инструмента распаковки
$ sudo apt get update
$ sudo apt-get install unzip

Файл установщика следует распаковать в папку с именем «kotlinc», как показано на Рисунке 1-5.
[image:]
Рисунок 1-5. Распаковка установщика Kotlin
Прежде чем мы сможем использовать инструменты командной строки, нам нужно добавить папку «kotlinc / bin» в переменную системного пути, как показано в листинге 1-9.
Листинг 1-9. Добавление kotlinc / bin в системный путь
$ export PATH=~/kotlinc/bin:$PATH
Нажмите ENTER, и теперь команда kotlinc должна работать. Вы можете добавить строку, показанную в листинге 1-9, в свой сценарий входа, чтобы инструменты Kotlin были доступны каждый раз, когда вы открываете окно терминала.
Windows 10
Скопируйте заархивированный файл установщика Kotlin в домашний каталог и распакуйте его там. Используйте свой любимый архиватор для распаковки. Его следует распаковать в следующую папку: C: \ Users \ yourname \ kotlinc. Внутри папки kotlinc находится папка bin, содержащая различные скрипты и командные файлы, которые нам нужно использовать для компиляции. Эта папка bin - это то, что нам нужно, чтобы добавить системный путь Windows.
Чтобы добавить папку kotlinc \ bin к системному пути, нажмите кнопку Windows Пуск ➤ Панель управления ➤ Система. Когда откроется диалоговое окно «Система», нажмите «Дополнительно» ➤ Переменные среды. Есть два поля для переменных; в верхнем поле указано «Пользовательские переменные», а в нижнем поле - «Системные переменные». Системный ПУТЬ будет в поле «Системные переменные». Добавьте kotlinc \ bin в переменную PATH. Закройте системное диалоговое окно, чтобы сохранить изменения.
Использование SDKMAN
SDKMAN можно использовать в macOS, Linux, Cygwin (Windows), FreeBSD и других системах UNIX. Если у вас уже есть это как часть вашей инструментальной цепочки, вы можете использовать его для получения компилятора Kotlin. Если у вас еще нет SDKMAN, его просто установить. См. Листинг 1-10 для установки
SDKMAN.
Важно! Прежде чем вы сможете установить SDKMAN из командной строки, вам необходимо получить инструмент curl. Если у вас его еще нет, используйте диспетчер пакетов вашей платформы, чтобы получить curl.
Листинг 1-10. Установка SDKMAN из командной строки
$ curl -s "https://get.sdkman.io" | bash
Следуйте инструкциям на экране, чтобы завершить установку. Вам нужно будет закрыть текущее окно терминала и запустить другое, потому что установщик SDKMAN внес изменения в сценарий входа. Чтобы эти изменения вступили в силу, вам нужно будет открыть новое окно терминала. Когда это будет сделано, мы можем установить kotlin. См. Листинг 1-11 для команды установки.
Листинг 1-11. Установка Kotlin через SDKMAN
$ sdk install kotlin
Кодирование с помощью инструментов командной строки
Какой бы способ вы ни выбрали для установки инструментов командной строки, к настоящему времени у вас уже должен быть работающий компилятор Kotlin. Чтобы попробовать, откройте окно терминала и введите команду kotlinc. Это изменит ваше приглашение терминала на тройной шеврон (больше чем подписать); см. Листинг 1-12.
Листинг 1-12. Котлин REPL
$ kotlinc
Добро пожаловать в Kotlin версии 1.2.10 (JRE 9.0.1 + 11)
Тип: help для помощи,: quit for quit
>>>

Это Kotlin REPL - сокращение от Read, Eval, Print, Loop. Он выполняет команды Kotlin в интерактивном режиме и сразу показывает результаты. Если вы раньше использовали консольную функцию современных браузеров для ввода команд JavaScript, это очень похоже на это. REPL - хороший способ интерактивного изучения языка. Это также очень полезно во время разработки, потому что позволяет вам опробовать выражения и операторы, не проходя полный цикл записи-компиляции-выполнения. Возможно, вы захотите попробовать несколько выражений и операторов (см. Листинг 1-13).
Листинг 1-13. Простые выражения
>>> 5 * 3
15
>>> println("Hello there")
Hello there
[bookmark: _GoBack]for (i in 1 . . 3) {
. . .println(i)
. . .}
1
2
3
>>>

REPL очень полезен для опробования операторов и даже коротких фрагментов, подобных показанному в листинге 1-13, но если вам нужно опробовать более длинные программы, будет удобнее записать его в файл программы, скомпилировать и запустить. это, как и программы на Java.
Давайте попробуем посмотреть, как это выглядит в Котлине.
Сначала создайте файл и назовите его «hello.kt» - исходные файлы Kotlin имеют расширение «.kt».
Содержимое hello.kt показано в листинге 1-14.
Листинг 1-14. hello.kt
fun main(args: Array<String>) {
 print("Hello")
}

Kotlin имеет сходство с Java, поэтому листинг 1-14 может показаться знакомым, но вы также быстро заметите некоторые очевидные вещи, поэтому давайте рассмотрим их прямо сейчас.
· Нет конструкции класса. Котлину не нужен класс для выполнения функции. Функция, показанная в листинге 1-14, известна как функция верхнего уровня; функция main особенная, потому что, как и общедоступная static void main () в Java, интересная функция main () в Kotlin является точкой входа в приложение. Среда выполнения будет искать эту функцию при запуске файла Kotlin.
· Функция main имеет немного другой синтаксис. Функции определяются с помощью ключевого слова fun. Объявление типа идет после идентификатора (args); ты к этому привыкнешь. Кроме того, в Kotlin нет специального синтаксиса для определения массива. В Котлине массивы - это просто типы.
· Функция main не имеет возвращаемого значения. На самом деле, это так, мы просто не записали это в примере. Возвращаемое значение по умолчанию для функции - Unit; это как void в Java.
· Нет точки с запятой. В этом больше нет необходимости. Следующим шагом будет компиляция и запуск нашего исходного файла. В листинге 1-15 показаны команды для управления этим.
Листинг 1-15. Скомпилируйте и запустите hello.kt
kotlin hello.kt –include-runtime –d hello.jar
java –jar hello.jar

Если вам удалось ввести все правильно, как показано в предыдущих списках и примерах, вы должны увидеть сообщение «Hello World» на своем экране.
Если вы чувствуете, что инструменты командной строки вам не нравятся, и вы предпочитаете использовать более многофункциональную среду программирования, вы можете попробовать другие IDE, такие как Eclipse, IntelliJ или Android Studio 3 (AS3). В этой книге мы рассмотрим установку и использование как IntelliJ, так и AS3. В следующем разделе вы узнаете, как настроить IntelliJ IDEA.
Установка IntelliJ
JetBrains создал Kotlin, поэтому, как вы могли догадаться, он имеет отличную поддержку. Android Studio основана на JetBrain IntelliJ IDEA CE (Community Edition); однако Android Studio бесплатна и OSS поддерживается Google, а не JetBrains.
Мы могли бы использовать AS3 даже для первой части этой книги; однако для этого потребуется, чтобы мы работали с компонентами Kotlin и Android одновременно. Я решил не делать этого и вместо этого сосредоточился исключительно на Котлине. AS3 в любом случае основан на IntelliJ IDEA, поэтому любые знания и навыки, которые мы получим в IntelliJ, будут хорошо переноситься на AS3.
Вы можете загрузить IntellijJ IDEA с веб-сайта JetBrains (http://www.jetbrains.com), затем перейти к инструментам и перейти к IntelliJ IDEA (см. Рисунок 1-6). Вы попадете на страницу, где сможете выбрать соответствующий установщик для своей платформы. Вы также сможете выбрать, хотите ли вы загрузить версию «Ultimate» или «Community». Мы скачаем версию сообщества.
Если вы используете Windows, вам необходимо:
1. Дважды щелкните загруженный файл ideaIC.exe.
2. Следуйте инструкциям на экране, чтобы завершить установку.
Для macOS сделайте следующее:
1. Дважды щелкните загруженный файл ideaIC.dmg.
2. Скопируйте IntelliJ IDEA в папку Applications.
3. Запустите IntelliJ IDEA.
[image:]
Рисунок 1-6. Страница загрузки IntelliJ IDEA
Для Linux инструкция по установке следующая:
1. Скопируйте установочный файл tar.gz в каталог, в котором у вас есть права на чтение, запись и выполнение; для наших целей мы скопируем его в домашнюю папку (см. листинг 1-16).
Листинг 1-16. Скопируйте установщик IntelliJ в вашу домашнюю папку
$ cd
$ cp ~/Downloads/ideaIC-2017.3.2.tar.gz .

2. Распакуйте файл ideaIC.tar.gz, как показано в листинге 1-17.
Листинг 1-17. Разверните установщик
tar –xzvf ideaIC.tar.gz
3. Добавьте ideaIC / bin в системный путь, как показано в листинге 1-18.
Листинг 1-18. Добавьте ideaIC / bin в системный путь
$ export PATH = ~ / ideaIC-2017.3.2 / bin: $ PATH :.
4. Запустите IntelliJ IDEA, запустив сценарий idea.sh, как показано в листинге 1-19.
Листинг 1-19. Запустите idea.sh
$ sh idea.sh
Создание проекта
Запустите IntelliJ, если вы еще этого не сделали. Он начинается с экрана приветствия, как показано на
Рисунок 1-7. Для начала создадим проект.
[image:]
Рисунок 1-7. Добро пожаловать в IntelliJ IDEA
Щелчок по «Create New Project» переводит нас в окно «New Project» (показанное на Рисунке 1-8). Выберите «Kotlin / JVM» и нажмите кнопку «Далее».
[image:]
Рисунок 1-8. Новый проект Kotlin / JVM
Это приводит нас ко второму окну мастера «Новый проект», где нам нужно ввести некоторую информацию, но большинство из них уже предварительно заполнено записями по умолчанию, и мы можем просто принять значения по умолчанию. Нам необходимо указать «Название проекта», если только вы хотите назвать свой проект «без названия» (это значение по умолчанию для поля «Название проекта», вероятно, не лучшая идея). На рис. 1-9 я использовал «kotlinproject» в качестве имени проекта. Я не менял значение по умолчанию расположения проекта - «IdeaProjects» в домашней папке. Я также не вносил никаких изменений в «Project SDK», который был обнаружен IntelliJ во время установки. Чтобы завершить работу мастера создания проекта, нажмите кнопку «Готово».
[image:]
Рисунок 1-9. Новый проект
Вам будет показано окно «Совет дня» (рис. 1-10) при первом запуске IntelliJ. Советы очень полезны при изучении возможностей IDE, но я предпочитаю, чтобы они появлялись только тогда, когда я их вызываю, а не всплывали каждый раз при запуске IDE. Вы можете отключить окно «Совет дня», отображаемое во время запуска, сняв флажок «Показывать советы при запуске». Давай пока закроем.
Если закрыть диалоговое окно с подсказкой дня, мы сможем более полно увидеть наш недавно созданный проект (рис. 1-11). В левой части среды IDE показано «Окно инструментов проекта»; у него сейчас не так много, потому что мы еще ничего не создали.
[image:]
Рисунок 1-10. Совет дня
[image:]
Рисунок 1-11. Наш проект Kotlin в IntelliJ
Окно Project Tool позволяет нам изменять «представления». Все представления показывают один и тот же проект, но каждое представление упорядочивает содержимое по-своему. Вы можете изменить вид окна Project Tool, нажав кнопку раскрывающегося списка (см. Рисунок 1-12). Вам следует попробовать несколько представлений, чтобы ознакомиться с ними.
[image:]
Рисунок 1-12. Окно инструмента проекта, виды
В оставшейся части этого раздела мы будем использовать представление «Проект». Это представление показывает наши файлы в древовидной структуре, очень похожей на файловый менеджер в вашей ОС (см. Рис. 1-12). Вы можете развернуть и развернуть, чтобы увидеть содержимое папок, как показано на Рисунке 1-13.
[image:]
Рисунок 1-13. Окно инструментов проекта. Просмотр проекта
Папка «src» (сокращение от «source») - это место, где мы будем размещать наши исходные файлы Kotlin.
Щелкните правой кнопкой мыши папку src и выберите New ➤ Kotlin File / Class, как показано на рисунке 1-14.
[image:]
Рисунок 1-14. Новый файл Kotlin из окна инструмента "Проект"
Сейчас мы создадим файл Kotlin и назовем его «Hello»; нам не нужно писать расширение «.kt» в поле «Имя» (см. рис. 1-15) - расширение будет добавлено автоматически. Убедитесь, что в поле «Тип» диалогового окна выбрана опция «Файл» (см. Рисунок 1-15). Нажмите кнопку ОК, чтобы создать файл.
[image:]
Рисунок 1-15. Новый файл Kotlin
Когда исходный файл будет создан, вы увидите его в папке src в окне Project Tool, и он также будет открыт в окне главного редактора (см. Рисунок 1-16).
[image:]
Рисунок 1-16. Hello.kt
IntelliJ имеет отличные возможности подсказки кода и автозаполнения. Когда он распознает что-то, что вы печатаете, он пытается быть полезным, предлагая вам предложения и подсказки (см. Рис. 1-15). Как только вы наберете достаточно символов, которые могут быть ключевыми словами или конструкциями Kotlin, IDE предложит предложения. Вы можете принять текущий предлагаемый вариант (выделен во всплывающем окне, показанном на рис. 1-15) или используйте мышь или клавишу со стрелкой, чтобы выбрать другие варианты автозаполнения.
Полный листинг кода для этого примера показан в листинге 1-20.
Листинг 1-20. Hello.kt
fun main (args: Array <String>) {
 	println ("Привет, мир")
}

Следующим шагом будет запуск этой программы; вы можете управлять этим, вызывая меню «Выполнить» в строке главного меню IntelliJ. Строка главного меню находится в верхней части IDE, параметры верхнего уровня - «Файл», «Редактировать», «Просмотреть до справки». В строке главного меню выберите «Выполнить» ➤ «Выполнить». Вы заметите, что в главном меню «Выполнить» есть два параметра «Выполнить» и что первая опция Run неактивна. Выберите другой вариант «Выполнить», расположенный на четыре пункта вниз сверху. Первый вариант «Выполнить» выделен серым цветом, поскольку мы не определили конфигурацию среды выполнения для проекта. Мы могли бы отредактировать конфигурацию и указать имя класса среды выполнения, но мы не обязаны этого делать. При выборе второго варианта выполнения появляется диалоговое окно (см. Рис. 1-17), в котором у нас запрашивается имя класса среды выполнения для текущего проекта. «HelloKt» - это класс, который мы выберем в качестве класса среды выполнения для этого проекта.
Примечание. Имя нашего исходного файла - «Hello.kt», но компилятор Kotlin не будет генерировать «Hello.class»; вместо этого он сгенерирует байтовый код «HelloKt.class». Вы должны помнить об этом при работе с файлами классов Kotlin.
[image:]
Рисунок 1-17. Запуск Hello.kt
IDE скомпилирует «Hello.kt» в «HelloKt.class» и после этого запустится. Результаты отобразятся в окне инструмента «Выполнить» (см. Рисунок 1-18).
Теперь, когда мы успешно выполнили функцию верхнего уровня, давайте добавим класс в приложение и создадим более объектно-ориентированную версию примера кода. Чтобы добавить класс, щелкните правой кнопкой мыши папку «src» в окне инструмента «Проект» (рис. 1-19) и выберите «Создать» ➤ «Файл / класс Kotlin».
[image:]
Рисунок 1-18. Результат запуска Hello.kt
[image:]
Рисунок 1-19. Добавление нового файла / класса в проект
Когда появится диалоговое окно «Новый файл / класс Kotlin», выберите «Класс» (рисунок 1-20); назовем его "Greeter".
Отредактируйте класс Greeter в главном окне редактора (рис. 1-21).
Затем отредактируйте Hello.kt, как показано на Рисунке 1-22. После внесения изменений снова запустите «Hello.kt». В строке главного меню выберите «Выполнить» ➤ «Выполнить»; в качестве альтернативы вы можете использовать Shift + F10 для запуска кода.
[image:]
Рисунок 1-20. Новый класс Kotlin
[image:]
Рисунок 1-21. Класс Greeter
[image:]
Рисунок 1-22. Запуск main с классом Greeter
На рис. 1-21 показан результат нашего обновленного кода (ов). На этом все действия по кодированию в этой главе завершаются. Как вы, наверное, уже знаете, IntelliJ отлично поддерживает язык Kotlin; вам не нужно его использовать, если вы предпочитаете кодировать программы на Kotlin с помощью другого редактора. Но если вы решите использовать ее, мы можем также сделать краткий обзор IDE, чтобы использовать ее лучше. Об этом весь следующий раздел.
IDE IntelliJ
Рисунок 1-23 показывает различные части IDE. У вас должен быть открытый проект, чтобы вы могли увидеть что-то подобное на своем рабочем столе.
[image:]
Рисунок 1-23. IntelliJ IDEA IDE
В Таблице 1-2 обсуждаются части IDE, как это показано на Рисунке 1-22.
Таблица 1-2. IntelliJ IDE
	Строка главного меню
	Есть много способов выполнить любую задачу в среде IDE; ты можешь использовать различные сочетания клавиш или контекстные меню, но большинство всесторонние средства навигации будут в строке главного меню. Этот бар находится на самом верху IDE.

	Панель окна инструментов
	Панель окна инструментов проходит по периметру окна IDE. Он содержит отдельные кнопки, необходимые для активации определенных окон инструментов.

	Показать / скрыть окно инструментов
	Это быстрый ярлык для просмотра различных окон инструментов в IDEA. Окна инструментов также можно просмотреть или скрыть в строке главного меню, Вид View ➤ Инструмент Windows.

	Окно главного редактора
	Это наиболее заметное окно, занимающее наибольшее пространство на экране. В окне редактора вы можете создавать и изменять файлы проекта и исходные файлы.

	Панель инструментов
	Панель инструментов позволяет выполнять широкий спектр действий (например, сохранять файлы, запускать приложение, открывать диспетчер AVD, открывать диспетчер SDK, отменять, повторять действия и т. д.).

	Панель навигации
	Позволяет перемещаться по файлам проекта. Это просто более компактный вид окна «Файлы проекта». Это горизонтально расположенная коллекция прямоугольников со стрелками, которая напоминает своего рода навигацию по хлебным крошкам, которую вы можете найти на некоторых веб-сайтах. Вы можете открывать файлы проекта либо через панель навигации, либо через окно инструментов проекта.

	Окно инструмента проекта
	Показывает файлы вашего проекта. Если вы хотите открыть определенный файл, дважды щелкните этот файл в этом окне, и он откроется в главном окне редактора. Вы также можете использовать контекстные меню для элементов в этом окне. Контекстные меню позволяют использовать альтернативные способы выполнения задачи в среде IDE (например, добавление файла класса, выполнение кодов, отладка и т. д.)

Краткое содержание главы
· Kotlin - это новейший язык программирования для Android, имеющий первоклассную поддержку в Android Studio 3.
· Есть много способов установить компилятор командной строки Kotlin и среду выполнения в macOS, Linux и Windows.
· Различные IDE поддерживают язык Kotlin; для некоторых из них вам потребуется подключаемый модуль, а для некоторых он поддерживается "из коробки".
· Kotlin похож на Java, но у него есть отличия.
· IntelliJ имеет отличную поддержку Kotlin - ну, в конце концов, JetBrains создал Kotlin.
В следующей главе мы рассмотрим следующее:
· Элементы программы (например, литералы, переменные, выражения, ключевые слова, операторы и т. д.) - все, что составляет наш код.
· Какие типы данных мы можем использовать в Kotlin
· Почему в Kotlin есть тип, допускающий значение NULL, и что это вообще такое?
· Управляющие структуры, чтобы вы могли зацикливаться и разветвляться
· Обработка исключений и почему вам больше не нужно писать try-catch на Kotlin (спойлеры)
image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

